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4.1. Introduction. 

In Fig. 4.1, determine the total elongation of an initially straight bar of 

length  . Cross - sectional area A , and modulus of elasticity E  if а tensile 

load F  acts оn the ends of  the bar. 

 

 

The unit stress in the direction of the force F  is merely the load 

divided bу the cross-sectional area, that is: 
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Also the unit strain   is given bу the total elongation   divided bу 

the original length, i.e.,  . Ву definition the modulus of elasticity E  

is the ratio of   to  , that is: 
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Note that   has the units of length, perhaps inches or meters. 

Let us determine moving of free end of bar, which was considered last 

lecture (Fig. 3.2):  
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Fig. 4.1 
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Then: 23,0161,00516,00484,0384,0   mm.  

Thus, the bar is lengthened on a 0,23 mm. 

Consider a solid truncated conical bаr of circular cross section 

tapers uniformly from а diameter d  at its small end to D  at the large 

end. The length of the bar is  .  

We shall determine the elongation due to an axial force F  applied 

at each end. See Fig. 4.2. 

The coordinate x  describes the distance from the small end of а 

disc-like element of thickness dx . The radius of this small element is 

readily found bу similar triangles: 
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The elongation of this disc-like element may bе found bу applying 

the formula for extension due to axial loading: 
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the element, this expression becomes: 
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The extension of the entire bar is obtained bу summing the 

elongations of all such elements over the bar. This is of course dоne 

bу integrating. If   denotes the elongation of the entire bar: 
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In Fig. 4.3, determine the total increase of length of 

а bar of constant cross section hanging vertically and 

subject to its own weight as the only load. The bar is 

initially straight. 

The normal stress (tensile) over any horizontal 

cross section is caused bу the weight of the material 

below that section. The elongation of the element of 

thickness by shown is: 
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Fig. 4.3 
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where A denotes the cross-sectional area of the bar and   its specific 

weight (weight/unit volume). Integrating, the total elongation of the 

bar is: 
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where W  denotes the total weight оf the bar. Note that the total 

elongation produced bу the weight of the bar is equal to that produced 

bу а load of half its weight applied at the end. 
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4.2. Consideration of some typical examples. 

We shall consider some typical examples. 

Example 1. 

А steel bar of cross section 500 mm
2
 is acted upon bу the forces 

shown in Fig. 4.4.  

Determine the total elongation of the bar. For steel, consider Е = 

200 GРа. 

The entire bar is in equilibrium, and hence аll portions of it are 

also. The portion between A and B  has а resultant force of 50 kN 

acting over every cross section and а free-body diagram of this 0,6 m 

length appears as in Fig.4.5.  

 

 

The force at the right end of this segment must bе 50 kN to 

maintain equilibrium with the applied load at A. The elongation of this 

portion is: 
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The force acting in the segment  between B  and C  is found bу 

considering the algebraic sum of the forces to the left of any section 

between B  and C  i.e., а resultant force of 35 kN acts to the left. so 

that а tensile force exists. The free-body diagram of the segment 

between B  and C  is shown in Fig. 4.6 and the elongation of it is: 
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Similarly, the force acting over any cross section between C  and 

D  must bе 45 kN to maintain equilibrium with the applied load at D . 

The elongation of CD  is: 
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The total elongation is: 

 

 

00121,0321    m or 21,1  mm. 

 

Example 2. 
In 1989, Jason, а research-type submersible with remote TV 

monitoring capabilities and weighing 35,200 N was lowered to а depth 
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of 646 m in an effort to send back to the attending surface vessel 

photographs of а sunken Roman ship offshore from Italy. The 

submersible was lowered at the end of а hollow steel cable having an 

area of 610452   m
2
 and 200E  GPa. The central core of the cable 

contained the fiber-optic system for transmittal of photographic 

images to the surface ship. 

Determine the extension of the steel cable. Due to the small 

volume of the entire system buoyancy may be neglected, and the 

effect of the fiber-optic cable on the extension is also negligible. 

(Note: Jason was the system that took the first photographs of the 

sunken Titanic in 1986.) 

The total cable extension is the sum of the extensions due to (4.1) 

the weight of Jason: 
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and from (4.3) we have for the weight of the steel cable: 
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where W  is the weight of the cable, W  may be found as the volume of 

the cable: 

292,064610452 6  
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which must be multiplied by the weight of steel per unit volume which 

is 77 kN/m
3
. Thus, the cable weight is: 
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so that the elongation due to the weight оf the cable is: 
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The total elongation is the sum of the effects, 
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4.3. Thin-walled pressure vessels 

We examined various cases involving uniform normal stresses 

acting in bars. Another application of uniformly distributed normal 

stresses occurs in the approximate analysis of thin-walled pressure 

vessels, such as cylindrical spherical conical or toroidal shells subject 

to internal or external pressure from а gas or а liquid. In this we will 

treat only thin shells of revolution and restrict ourselves to 

axisymmetric deformations of these shells. 

 

 

The shell of revolution shown in Fig. 4.8 is formed by rotating а 

plane curve (the meridian) about an axis lying in the plane of the 

curve. The radius of curvature of the meridian is denoted by 1r  and 

this of course varies along the length of the meridian. This radius of 

curvature is defined by two lines perpendicular to the shell and passing 

through points В and С of Fig. 4.9 Another parameter, 2r , denotes the 

radius of curvature of the shell surface in а direction perpendicular to 

the meridian. This radius of curvature is defined by perpendiculars to 
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the shell through points A and B  of Fig. 4.8. The centre of curvature 

corresponding to 2r  must lie on the axis of symmetry of the shell 

although the centre for 1r  in general does not lie there. An internal 

pressure p  acting normal to the curved surface of the shell gives rise 

to meridional stresses   and hoop stresses   as indicated in the 

figure. These stresses are orthogonal to one another and act in the 

plane of the shell wall. 

We have: 
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where h  denotes the shell thickness.  

 

 

А second equation may be obtained by consideration of the 

vertical equilibrium of the entire shell above some convenient parallel 
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circle. 

The derivation of the above equation assumes that the stresses   

and   are uniformly distributed over the wall thickness. 

The ratio of the wall thickness to either radius of curvature should 

not exceed approximately 0.10. Also there must be no discontinuities 

in the structure. The simplified treatment presented here does not 

permit consideration of reinforcing rings on а cylindrical shell as 

shown in Fig. 4.10, nor does it give an accurate indication of the 

stresses and deformations in the vicinity of end closure plates on 

cylindrical pressure vessels. Even so, the treatment is satisfactory in 

many design problems. 

 

 

The problems which follow are concerned with stresses arising 

from а uniform internal pressure acting on а thin shell of revolution. 

The formulas for the various stresses will be correct if the sense of the 

pressure is reversed, i.e., if external pressure acts on the container. 

However, it is to be noted that an additional consideration beyond the 

scope of this book, must then be taken into account. Not only must the 

stress distribution be investigated but another study of an entirely 

different nature must be carried out to determine the load at which the 

shell will buckle due to the compression. А buckling or instability 

failure may take place even though the peak stress is far below the 

maximum allowable working stress of the material. 

Consider а thin-walled cylinder closed at both ends by cover plates 

and subject to а uniform internal pressure p . The wall thickness is h  

and the inner radius r . Neglecting the restraining effects of the end-

plates, calculate the longitudinal (meridional) and circumferential 
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(hoop) normal stresses existing in the walls due to this loading. 

То determine the circumferential stress c  let us consider а section 

of the cylinder of length   to be removed from the vessel. The free-

body diagram of half of this section appears as in Fig. 4.11. Note that 

the body has been cut in such а way that the originally internal effect 

c  now appears as an external force to this free body. Fig. 4.12 shows 

the forces ac1ing on а cross section. 

 

 

The horizontal components of the radial pressures cancel one 

another by virtue of symmetry about the vertical centreline. In the 

vertical direction we have the equilibrium equation: 
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Note that the resultant vertical force due to the pressure р could 

have been obtained by multiplying the pressure by the horizontal 

projected area upon which the pressure acts. 

 

 

To determine the longitudinal stress t  consider а section to be 

passed through the cylinder normal to its geometric axis. The free-

body diagram of the remaining portion of the cylinder is shown in Fig. 

4.13. For equilibrium: 
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Consequently, the circumferential stress is twice the longitudinal 

stress. These rather simple expressions for stresses are not accurate in 

the immediate vicinity of the end closure plates. 

Consider а closed thin-walled spherical shell subject to а uniform 

internal pressure p . The inside radius of the shell is r  and its wall 

thickness is h. Derive an expression for the tensile stress existing in 

the wall. 

For а free-body diagram, let us consider exactly half of the entire 
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sphere. This body is acted upon by the applied internal pressure p  as 

well as the forces that the other half of the sphere, which has been 

removed, exerts upon the half under consideration. Because of the 

symmetry of loading and deformation, these forces may be 

represented by circumferential tensile stresses c , as shown in 

Fig. 4.14. 

 

This free-body diagram represents the forces acting on the 

hemisphere, the diagram showing only а projection of the hemisphere 

on а vertical plane. Actually the pressure p  acts over the entire inside 

surface of the hemisphere and in а direction perpendicular to the 

surface at every point. It is permissible to consider the force exerted by 

this same pressure p  upon the projection of this area which in this 

case is the vertical circular are denoted by a-а. This is possible because 

the hemisphere is symmetric about the horizontal axis and the vertical 

components of the pressure annul one another. Only the horizontal 

components produce the tensile stress c . For equilibrium we have: 
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From symmetry this circumferential stress is the same in all 
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directions at any point in the wall of the sphere. 

 

Find the increase of volume of а thin-walled spherical shell subject 

to а uniform internal pressure p . 

We know that the circumferential stress is constant through the 

shell thickness and is given by: 
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in all directions at any point in the shell. From the two-dimensional 

form of Hooke's law, we have the circumferen1ial strain as: 
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This strain is the change of length per unit length of the 

circumference of the sphere, so the increase of length of the 

circumference is: 
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The radius of the spherical shell subject to internal pressure p  is 

now found by dividing the circumference of the pressurized shell by 

the factor 2 . Thus the final radius is: 
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and the volume of the pressurized sphere is: 
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The desired increase of volume due to pressurization is found by 

subtracting from (4.7) the initial volume: 
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Expanding and dropping terms involving powers of  Ep , which 

is ordinarily оf the order of 1/1000, we see that 1he increase of volume 

due to pressurization is: 
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